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Abstract—An analysis is carried out for the solidification in a rectangular enclosure whose top and bottom
surfaces are kept adiabatic and sides are kept at a constant temperature. The transient effects of solidification
accompanied by natural convection have been studied in detail. The governing equations are written for the
temperature, vorticity, stream function and velocity in the melt along with the heat conduction equations
through the solid and the mold. The non-linear coupled equations have been non-dimensionalized and
solved with the aid of the Alternating Direction Implicit finite difference method. The velocity profiles in the
melt, and the temperature distribution in the melt, the solid and the mold are shown. [sotherms and
streamlines in the melt are plotted for different Rayleigh numbers. The dependence of the melt-solid interface
movement upon various non-dimensional parameters, such as Rayleigh number (5 x 10>-5 x 10%), Prandtl
number (0.1-100), aspect ratio (1.1-3.5), Stefan number (0.5-10) and a parameter indicating the effect of
superheat (0.67-2.33) are also studied.
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NOMENCLATURE B, temperature coefficient of cubical expan-
C,, specific heat [J/kgK]; ston '[K_ 1]’ )
d thickness of the mold [m]; 4, relative width of melt region = Y'/Y,;
D, width of the enclosure [m]; v, kinematic viscosity = p/p[m?/s];
g, gravitation constant [m/s*]; R dimensionless temperature =
Gr, Grashof number = (gB(T,— T .)D3/v?); (T = Tou/(Te — T.);
k, thermal conductivity [J/smK]; , density [kg/m®];
L, height of the enclosure [m]; v, stream function [m?%/s];
L, latent heat of solidification [J/kg]; w, vorticity [s™1].
p. pressure [N/m?];
Pr, Prandt] number = v/x; Superscript
Ra, Rayleigh number = Gr. Pr; * denotes dimensionless quantities.
Ste, Stefan number = L,/C, (T,—T,);
t, time [s]; Subscripts
tr, present time level in finite difference form; 1, melt ;
T, temperature [K]; m, mold;
T, mold outer surface temperature [K]; s, solid.
T initial temperature [K];
T,  solidification temperature [K];
u, velocity in the x direction [m/s]; INTRODUCTION
v velo.c1ty n th‘? y direction [mys]; HEAT conDUCTION problems with phase change have
X, vertical coordinate measured from the bot- been studied extensively f t Th
y for over a century. These
tom. of the enclos.ure [m]; problems are encountered in a wide range of situations
Y horizontal coordinate meas?red from the such as casting of metals and alloys, storage of thermal
, }cicrllftrelgfhthef eﬁclosulre [m] ’ ] energy, spacecraft thermal protection design, freezing
Y, at wi th of the melt region [m]., and thawing of foodstuffs etc. In modern foundary
Yo distance from the centre line to solid-mold

interface [m].

Greek symbols
a, thermal diffusivity [m?/s];

* Presently at the R&D Centre, Steel Authority of India
Ltd., Ranchi, India.

technology, the prediction of the solidification rate and
the temperature distribution during the solidification
process is very important in order to control the
fundamental parameters, such as stripping time for
static casting, and withdrawal rates for continuous
casting, etc.

An examination of the available literature indicates
that in most of the cases, the phase change problems
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have been treated as heat conduction problems. A
series of analytical solutions have been reported in the
literature, starting with the well known Stefan’s prob-
lem. Cole [1] has examined the available literature
and has given references of various analyticar and
numerical solutions available till 1969. In most of the
investigations, the major emphasis is given to semi-
infinite case or one dimensional heat conduction
problems. The solidification of the melt in multi-
dimensional enclosures of finite dimensions, for vari-
ous boundary conditions has been discussed by
Lazaridis [2] considering pure heat conduction.

However, the associated convective flow that is
developed in the melt during solidification, has been
given little attention so far. The natural convection
flow developed in the melt due to thermal gradients is
very important as it can have a large influence on the
structure of the solid formed, apart from affecting the
rate of solidification. In fact, they can even affect the
distribution of the solutes in a multi-component
system, which is so far believed to occur only by
diffusion. Experimentally, the predominance of natu-
ral convection has been shown by Cole and Bolling
[3]- The first attempt to study the convective flow
quantitatively has been made by Szekely and Stanek
[4] in their work on uni-directional solidification
accompanied by natural convection. Ramachandran
et al. [5] have solved the solidification problem with
natural convection in a 1-dim. vertical slot for various
boundary conditions, taking into account the heat
conducted by the solid and the mold. Sparrow et al. [6]
have made an elegant analysis of melting of a solid in a
cylindrical enclosure, with the effect of natural con-
vection in the melt. Experiments have been performed
by Sparrow, Ramsey and Kemink [ 7] for the freezing
of superheated and saturated melt in a cylindrical
enclosure.

The present work was carried out to study solidifi-
cation in a rectangular enclosure, taking into account
the heat transfer in the melt, the solid formed and the
mold containing them. The equations were solved for
the adiabatic boundary condition at the top and the
bottom of the enclosure, the mold walls being kept at a
constant temperature. Velocity distribution, stream-
lines and isotherm patterns due to combined heat
conduction and natural convection have also been
obtained along with the interface movement with time.

ANALYSIS

Consider a rectangular enclosure of width 2Y,
mold thickness d and height L. The enclosure is
extended to infinity in the z-direction, as shown in
Fig. 1.

Initially, the mold is kept at a temperature T, which
is less than the solidification temperature T',,. At time ¢
= 0, the melt at temperature T, (> T,,) is poured into
the enclosure. Immediately, a thin crust of solid is
formed adjacent to the inner surface of the mold, and
an inward movement of the solid front starts. Because

of the thermal gradients set up in the meit, a convection
current starts in the melt.

In the analysis, the top and the bottom surfaces of
the whole enclosure are kept adiabatic, while the outer
vertical surfaces of the mold are kept at a constant
temperature.

The following assumptions are made before writing
the governing equations:

(i) The properties such as the density, thermal
conductivity, specific heat etc. are assumed to be
independent of temperature for the melt, the solid and
the mold with the exception of the density of the melt
which contributes to the buoyancy forces.

(il) The fluid flow developed in the melt due to
thermal gradients is assumed to be laminar.

(iii} The melt is assumed to be Newtonian.

(iv) The contact between the solid formed and the
mold is assumed to be perfect, so that no contact
resistance is introduced.

The equations are written for one half of the
enclosure because of the symmetry at y = 0. We
require the energy, momentum and continuity equa-
tions in the melt, and the energy equations in the solid
and the mold, together with their initial and boun-
dary conditions.

Thus, in the melt:
continuity equation :

u dv
T =0;
J0x * Jy )

momentum equations:
in the x direction

Ou ou du
S tu—+v—=gHT-T
Fri s % gB( sat)

N %u N u\ 1dp @
v _ -7

x*  o0y*) péx )
and in the y direction

6v+ av+vav_ é%v
o Y ax ('3y_‘J ox?

+ o Lép 3
ayZ 0 (';y 4 ( )
energy equation:

oT, T, Ty _ (T,
Py T M a2

T,
o T % + av? > @

Top surtface

1
/

surface

4
L Mold

Solid
Melt

FiG. 1. Rectangular enclosure, infinite in z-direction.
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The first term in the RHS of equation (2) is obtained
via Boussinesq approximation [ 8] in which the density
variation in the melt is considered only in so far as it
contributes to buoyancy, otherwise it is neglected.

The problem can be simplified by combining equa-
tions (1)-(3), and writing in terms of vorticity w and
stream function ¥ for ease in numerical computations.

Thus, the vorticity equation can be stated as
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To make the results more general, the following non-

dimensional parameters are defined:

ow dw ow oT
—tu—+v—=—gf—+ wV? 5
az+"ax+"ay gﬁay vVia) ()
where
oW o
w=— <gx—2+a—y2>, (6)
G, i)
u=%, and vz—%. )]
The energy equation in the solid is
oT, 8T, O'T
S — ot — 4 8 8
ot <6x2 oy? ) ®
and in the mold
aT 0T, o*T
Uy, m 2 ‘m) 9
a <6x2 ay? > ©)
The initial and the boundary conditions are:
in the melt:
atr=0:T =T (10a)
oT, du
=0:—=0; —=0;v=0; 10b)
aty=0 3 o (
aty=Y . T=T,;u=0;v=0 (10c)
and
oT, oT, oy \? ay
S _k 1+ (= =pL,—; 10d
<ksay ‘ay>[ (6x Phages 109
at x =0and x = L:
aL:O; u=0and v=0; (10e)
ox
in the solid:
aty=Y": T, =T (11a)
aty=Yy, T,=T,; (11b)
JaT,
atx=0 and x =L: =0; (11¢)
0x
in the mold:
att=0; T,=T_; (12a)
oT oT
=Y, k.— =k —"; 12b
aty YO ks 5y m 6)) ( )
att=0: T, =T,;, = constant; (12¢)
oT,,
atx=0 and x=L: —=0. (12d)
0x

x* = x/L; y¥ = y/Y'(1); t* = a,1/D?;
o DT D WD,
o, L oy o, L

w* = wD¥a,L; Tt = (T, = THT;—T.); ‘(1321)

y—Y'(@t)
* = — - Ly =
TH = (T=THT=T: ¥ =53
Tl'*l"l = (Tm_TC)/(Tl_TC)’ J

Yo =0y = Y)(D - Y,)

Because of the non-dimensionalization, the original
variables, x, y, t are replaced by x*, y*, t*. Thus,

é oy 0 yFOY 0O

— = = = — 13b
ot D*ar Y ot oyt (130)
6 _ 12 _ytov d (13c)
ox Léox* Y dx éy¥’

0 1 @

In transforming equations (4)-(12), to equations
(14)-(22) below, it has been assumed that the interface
remains stationary for the period in which heat is
extracted from it. During this period, the equations
describing the fluid flow in the melt and the energy
equations in the melt, the solid and the mold are solved
assuming pseudo-steady state as discussed at great
length by Sparrow et al. [6]. Because of this assump-
tion the term 0Y'/0t appearing in the RHS of
equation (13b) can be neglected. It has also been
assumed that the thickness of the melt region Y’ varies
slowly with x so that the terms involving JY’/dx,
appearing in the RHS of equation (13c) is neglected.
The inclusion of these terms would add significantly to
the complexity and execution time of the numerical
solutions. (Complete transformed equations including
those terms are available in [9].) Sparrow er al. [6]
have discussed that this assumption is quite valid as a
first approximation in most cases of the phase change
problems with natural convection.

Thus the transformed dimensionless equations are:

oTy _ 0Tt (D\aT%
or* ox* Y' ) dy¥
D\!3*T* (D\?*T%
-(2) 5+ () T 0
Jw* » O0* D ow*
u + > ¥
or* ax* " \Y' ) ayr

3 *
— —(PN(PA\(DY ga -Pr~aT1
L/\Y j\Y, oyt
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D 2 azw* D 2 alw*

)y Pr—+ (=) Pr—s, (5
+<L> Pr e T <Y> Pr R (15)

D Zazw* D 2 azl//*

* . _ =y X
? (L) 0x*2 <Y) a1

D\ ay* oyp*

u* = (?) 6y_‘}‘ . v¥ = — Ox* ’ (17)
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The initial and the boundary conditions become:

in the melt:
att* =0: T =1; (20a)
oT* ou* )
at y¥ =0: at = ;@?=0 and v* = 0; (20b)
atyf=1: T} = ! ; u* =0 and v* =0;
(p+1)
(20c)
k, 1 aT* 10T*
ki (1—¢6) oy & oxt
Yo\ [ dé \? Y, \dé
1 — |} (== =Ste[=2)—; (20d
o () G |- se )i oo
atx* =0 and x*=1:
*
ai:(); u*=0 and v* =0; (20e)
Ox*
in the solid:
aty*=0: T*=1/(¢+1); (21a)
atyf =1: TX = T}; (21b)
aT*
atx*=0 and 1: =0; (2lc)
Ox*
in the mold:
att*=0: Tt =0; (22a)
k, 0T* Y, —Y OT*
tyr=0: - > =2 _ 7. 22b
R0 o T DY, (225)
aty¥ =1: TX =0; (22¢)
oT*
atx*=0 and x*=1: —— =0 (22d)
oym
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SOLUTION METHODOLOGY

Equations (14)-(22) were solved using finite differ-
ence technique and 10 x 10 spatial grids were
established each for the melt, the solid and the mold.
These grids were fine enough to resolve the steep
temperature gradients near the interface at early times,
for Ra < 10°. More grids were provided for higher
Rayleigh number to accommodate the rapid turning of
the fluid near the interface. Grids were deployed non-
uniformly similar to the grid system discussed by
Spalding [10] for solving the boundary layer problems.
The position of the interface was computed at the
beginning of each time step using Chebyshev approxi-
mations [11]. In solving the moving interface equation
(20d), the temperature gradients at the interface ap-
pearing in the equation were taken from the known
values calculated through the previous time step. The
energy equations for the melt, solid and the mold, and
the vorticity equation for the melt were written in their
central difference form and solved using the Alternat-
ing Direction Implicit (ADI) technique. The elliptic
stream function equation (16) was solved using the
Successive Over-Relaxation (SOR) method. The equa-
tions were solved sequentially.

At time * = 0, starting difficulties in the com-
putation were avoided by assuming a very small
thickness of the solid, due to chilling, equal to
0.0001 Y. It was also assumed that the temperature
profile in the solid was linear at time t* = 0[12]. The
initial thickness of the solid layer, due to chilling, was
varied to ascertain that it did not influence the
numerical solution. The tridiagonal matrices formed
by the temperature and vorticity equations were
solved using the general Tridiagonal Algorithm de-
scribed by Roache [13]. Computations were made on
a DEC-1090 computer.

RESULTS AND DISCUSSION

The temperature profiles in the melt, the solid and
the mold at various heights, with non-dimensional
time t* as the parameter, are shown in Fig. 2. As the
time progresses the temperature decays in the melt.
The temperature of the melt is found to increase with
the height, because of the natural convection de-
veloped in the melt. Initially, the temperature variation
with the height of the enclosure is very little since
conduction is dominating. Subsequently, natural con-
vection currents are developed due to thermal gradi-
ents, which in turn take the hotter melt to the top of
the enclosure driving the cooler melt towards the
bottom.

The time dependent velocity profiles in the melt are
shown in Fig. 3. The velocity profiles are symmetric
about y == 0 and the net upward flow equals the net
downward flow. With the progress in solidification, the
vertical velocity of the melt increases, reaches a
maximum value at some intermediate time and then
decays. At time t* = 0.03, the convection currents have
just set in. The velocity near the top (x/L = 0.9) and
near the bottom (x/L = 0.1} of the enclosure is found
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F1G. 2. Temperature profiles at different x/L.

to be the same, and the melt-solid interface is almost
parallel to the wall. As the solidification progresses, the
slope of the interface changes, and the velocity near the
top becomes more than that near the bottom surface of
the enclosure. A comparison of Figs. 2 and 3 at equal
heights but different times indicates that the thermal
field and the fluid motion decay almost at equal rates.
This is true since Pr = 0.98, which suggests that the
thermal and momentum diffusivities are nearly equal.

The streamlines and isotherms for the Rayleigh
number 5 x 10% and at time t* = 0.27 are shown in
Figs. 4 and 5. It can be easily observed that the general
characteristic of the flow pattern is upflow near the
centre of the enclosure, where the melt is hotter and
downflow near the melt-solid interface, where the melt

Ra = 5)(103
Pr = 098
Ste= 0-5

¢ =10
L¥pz22
ks ! km=1-2

——x/L=01
--- 05

*

Vertical velocity  u

y/Yo

FiG. 3. Vertical velocity distribution in melt at different x/L.
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Fic. 4. Streamline patterns in melt for Ra = 5 x 10° and ¢*
= 0.27.

is cooler. Both the streamlines and the isotherms
indicate that at larger time, the thickness of the melt
layeris greatest at the top and least at the bottom of the
enclosure. It is interesting to note that the streamlines
of higher values are restricted to the top portion of the
enclosure, where the temperature and hence the flow is
maximum. At high Rayleigh number (Ra = 5 x 10°%)
secondary cells are observed near the centre of the
enclosure during the initial period of solidification as
shown in Fig. 6.

An examination of Fig. 5 would indicate the pre-
dominance of the natural convection, where the iso-
therms are non-linear, contrary to the linear vertical
isotherms one would expect in the case of pure
conduction. Isotherms of higher values are concen-
trated near the centre of the top surface of the
enclosure where the temperature is maximum.,

The dependence of the interface movement on the
Rayleigh number is shown in Fig. 7. At low Rayleigh
number (Ra = 5 x 10?) where the natural convection
is minimum, the shape of the interface is found to be

10
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Ste=0-5
¢ =10
L/¥p=22
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0 1 L 1
0 0.25 0-50 075 1.0

yi¥o

FiG. 5. Isotherm patterns in meltfor Ra = 5 x 10*and t* =
0.27.



192

?/7 = ¥/ ¥mox
Prmax=1-0

PrQ98 . ¢ =10
S1e=050 ; L/¥y=22
Kok 212

FiG. 6. Streamline patterns in melt for Ra = 5 x 10° and t*
= 0.03.

almost vertical and parallel to the mold. As Ra
approaches zero, the interface will be exactly vertical
as conduction is the only mode of heat transfer. As Ra
increases, heat transfer due to convection increases
and the slope of the interface changes (Fig. 7). At low
and moderate Rayleigh numbers the computation is
carried up to non-dimensional time t* = 0.30, whereas
for high Rayleigh numbers, the computation is re-
stricted to a time t* = 0.09, due to enormous
computation time required in the latter case.

The movement of the interface with time, for
different aspect ratios (L/2Y, = 1.1 and 5.5) is shown
in Fig. 8. At low aspect ratio, where the convection is
maximum, the slope of the interface is high and it
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Fic. 7. Dependence of interface movement upon Rayleigh

number at different times.
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F16. 8. Interface movement at different times for aspect ratios
of 1.1 and 5.5,

increases with time. At high aspect ratios, the interface
is almost vertical except near the top and bottom of the
enclosure, where the boundary effects start influencing
the shape of the interface. This suggests that one can
assume the heat transfer to be uni-directional when the
aspect ratio is very high.

The influence of the Prandtl number (Pr) on the
interface movement is shown in Fig. 9. As Pr increases
the interface slope increases up to Pr = 10. Interest-
ingly Prandtl number greater than 10 does not have
any influence on the interface movement, and an
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FiG. 9. Dependence of interface movement upon Prandtl
number at different times.
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Fic. 11. Effect of superheat on thickness of the solid formed.

asymptotic solution is reached. This is evident from
equation (15) which suggests that the vorticity does
not change with time at high Prandtl numbers. This
supports the results discussed by Sparrow et al. [6].

The effect of the Stefan number (Ste) on the rate of
interface movement is shown Fig. 10. The melt-solid
interface is found to proceed faster when Ste is small, as
expected.

The dependence of the solidification rate on the
superheat (¢) can be understood from Fig. 11, where
the thickness of the solid formed is plotted with time,
with ¢ as the parameter. It can be seen from Fig. 11
that the rate of movement of solid front decreases
with increase in ¢. This is expected since large ¢
implies higher value of superheat and hence a decrease
in the solidification rate.

CONCLUDING REMARKS
An analysis has been carried out for the solidifi-
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cation in a rectangular enclosure. The equations were
written for the temperature, vorticity, stream function
and velocities in the melt. Consideration has also been
given to the heat conducted through the solid formed
and the mold. The coupled, non-linear, simultaneous
equations have been solved using the ADI finite
difference technique. The thickness of the solid formed
at every time step has been found by solving the energy
balance equation at the melt-solid interface.

The temperature and velocity profiles are plotted at
various heights in the enclosure. The temperature is
found to increase with the height. It has also been
found that the natural convection has significant effect
on the shape of the interface. The vertical velocity
component and the temperature decay at almost equal
rates when the Prandtl number is close to unity. The
effect of natural convection on solidification is clearly
shown in the isotherm and streamlines plotted for
different Rayleigh numbers. Finally, the rate of solidi-
fication is also studied for various non-dimensional
parameters such as the Rayleigh number, Prandtl
number, aspect ratio, Stefan number and the extent of
superheat.
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EFFETS THERMIQUES ET DYNAMIQUES PENDANT LA SOLIDIFICATION D'UN FLUIDE
DANS UNE CAVITE RECTANGULAIRE

Résumé—On analyse la solidification dans une cavité rectangulaire dont les surfaces supérieure et inférieure
sont adiabatiques tandis que les cOtés sont maintenus 4 température constante. On étudie en détail la
solidification accompagnée par la convection naturelle. Les équations fondamentales sont écrites pour la
température, la vorticité, la fonction de courant et la vitesse dans le bain avec les équations de la conduction
thermique dans le solide et le bain. Les équations couplées non-linéaires sont rendues sans dimension et
résolues a I'aide d'une méthode implicite aux différences finies et avec directions alternées. Les profils de
vitesse dans le bain sont donnés ainsi que la distribution de température dans le bain et dans le solide. Des
isothermes et des lignes de courant dans le bain sont tracées pour différents nombres de Rayleigh. On étudie
aussi la dépendance du mouvement a l'interface bain-solide vis-a-vis des paramétres adimensionnels tels
que le nombre de Rayleigh (5x10*-5x10°), le nombre de Prandtl (0,1-100), le rapport de forme
(1,1-5,5), le nombre de Stefan (0.5-10) et un paramétre indiquant l'effet de surchauffe (0,67-2,33).

THERMISCHE UND STROMUNGSBEDINGTE VORGANGE WAHREND DER ERSTARRUNG
IN EINEM RECHTECKIGEN GESCHLOSSENEN BEHALTER

Zusammenfassung—Es wurde eine Untersuchung tiber die Erstarrung in einem rechteckigen geschlossenen
Raum durchgefiihrt, dessen Ober- und Unterseite adiabat sind und dessen Seiten auf einer konstanten
Temperatur gehalten werden. Die zeitlichen Vorginge der Erstarrung, die von freier Konvektion begleitet
sind, wurden detailliert untersucht. Die beschreibenden Gleichungen beriicksichtigen Temperatur, Wirbelig-
keit, Stromfunktion und Geschwindigkeit in der Schmelze sowie die Wirmeleitung in der erstarrten Phase
und in der Form. Die nichtlinearen gekoppelten Gleichungen wurden dimensionslos gemacht und mit Hilfe
des impliziten finiten Differenzenverfahrens der alternierenden Richtungen (ADI-Verfahren) gelost. Es
werden die Geschwindigkeitsprofile in der Schmelze und die Temperaturverteilung in der Schmelze, der
festen Phase und in der Form angegeben. Fiir verschiedene Rayleigh-Zahlen sind die Isothermen und
Stromlinien in der Schmelze grafisch dargestellt. Ferner wurde die Abhingigkeit der Bewegung der
Erstarrungsgrenze von verschiedenen dimensionslosen Parametern wie Rayleigh-Zahl (5 - 1025 - 10%),
Prandtl-Zahl (0,1-100), Seitenverhaltnis (1,1--5,5), Stefan-Zahi (0,5-10) und einem Parameter, der den
EinfluB der Uberhitzung beschreibt (0,67-2,33), untersucht.

TENJNOBBIE U THAPOAHHAMUYECKHUE 3®PEKTbI MPU 3ATBEPAEBAHUU
XHUAKOCTH B MPAMOYTOJIBHOU IMOJIOCTH

Annotaius — TlpopenieH aHaiH3 mnpolecca 3aTBEPAECBAHHUS B MPAMOYIOJbHOHW MOJIOCTH, BEPXHAS H
HIXKHSAS TOBEPXHOCTH KOTOPOH ABNSIOTCH aaHabaTHuYeCKMMH, a OOKOBbIE HMEIOT NOCTOSHHYIO TEMfe-
patypy. [lonpobHo uccnenyeTcs HecTaLIHOHAPHBIA MPOUECC 3aTBEPAEBAHHS, CONPOBOXKAAIOILHICS ecTe-
CTBEHHOM KOHBekuue#. [Ijin onpeneneHHss TeMNEpaTyphl, CTENEHH 3aBHXPEHHOCTH, QyHKUMH TOKa W
CKOPOCTH XHIKOCTH B pacrjiaBe BbIBeJEHbl OCHOBHbIC YPABHEHWS Hapsjy C ypaBHEHHSMH TNepelayud
TEna TeMioNnpPoBOAHOCTbIO Yepe3 TBepaoe Te10 H npecchopmy. HenuHeliHble conpsikeHHble ypaBHEHNS
npuBeficHbl K Oe3pa3MEpHOMY BHIY H PElICHbl HEABHBIM KOHEHHO-PA3HOCTHBIM METOIOM NEPEMEHHBIX
HanpaeeHuii. [Ipeactasnens Npod ik CKOPOCTH B pacrjiaBe ¥ pacnpele/icHist TEMNEPATyp B pacliase.
TBEpAOM Teste M npecchopMe. [1oCTpoeHbl H30TEPMBI M JIMHHM TOKAa B pAacrjaBe NP Pa3IHuHBIX
3nayeHusx uucina Penes. MccnenosaHa Takxe 3aBHCHMOCTb [BWXEHHs TpPaHHLB! pa3zesia «paciias-
TBEPIOE TENO» OT PA3MYHBIX OGe3pa3sMEPHBIX MapamMeTpoB, TAKHX Kak d4Hcio Penes (5-102-5-10%),
uucio Tlpanarns (0,1-100), otHowenue cropor (1,1-5.5), 4yucno Credana (0,5-10) u napamerpa,
YUHTHIBAIOLIETO BIKsHHe neperpepa (0,67-2,33).



