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Abstract-An analysis is carried out for the solidification in a rectangular enclosure whose top and bottom 
surfaces are kept adiabatic and sides are kept at a constant temperature. The transient effects of solidification 
accompanied by natural convection have been studied in detail. The governing equations are written for the 
temperature, vorticity, stream function and velocity in the melt along with the heat conduction equations 
through the solid and the mold. The non-linear coupled equations have been non-dimensionalized and 
solved with the aid of the Alternating Direction Implicit finite difference method. The velocity profiles in the 
melt, and the temperature distribution in the melt, the solid and the mold are shown. Isotherms and 
streamlines in the melt are plotted for different Rayleigh numbers. The dependence of the melt-solid interface 
movement upon various non-dimensional parameters, such as Rayleigh number (5 x 102-5 x lo’), Prandtl 
number (O.l-lOO), aspect ratio (1.1-X5), Stefan number (0.5-10) and a parameter indicating the effect of 

superheat (0.67-2.33) are also studied. 

NOMENCLATURE 

specific heat [J/kg K] ; 
thickness of the mold [m] ; 
width of the enclosure [m] ; 
gravitation constant [m/s’] ; 
Grashof number = (g/3( Ti - T,)D3/v2) ; 
thermal conductivity [J/s m K] ; 
height of the enclosure [m] ; 
latent heat of solidification [J/kg] ; 
pressure [N/m’] ; 
Prandtl number = V/E; 
Rayleigh number = Gr . Pr ; 
Stefan number = L,/C, ( Ti - T,); 
time [s] ; 
present time level in finite difference form ; 
temperature [K] ; 
mold outer surface temperature [K] ; 
initial temperature [K] ; 
solidification temperature [K] ; 
velocity in the x direction [m/s] ; 
velocity in the y direction [m/s] ; 
vertical coordinate measured from the bot- 
tom of the enclosure [m] ; 
horizontal coordinate measured from the 
centre of the enclosure [m] ; 
half width of the melt region [m]; 
distance from the centre line to solid-mold 
interface [ml. 

Greek symbols 

4 thermal diffusivity [m’/s] ; 

* presently at the R&D Centre, Steel Authority of India An examination of the available literature indicates 
Ltd., Ranchi, India. that in most of the cases, the phase change problems 

temperature coefficient of cubical expan- 
sion [K- ‘1; 
relative width of melt region = Y/Y,; 
kinematic viscosity = p/p[m2/s] ; 
dimensionless temperature = 

(Ti - T,,tM(T,,t - T,); 

P3 density [kg/m31 ; 
44 stream function [m’/s] ; 
w vorticity [s-l]. 

Superscript 
* denotes dimensionless quantities. 

Subscripts 

1, melt ; 
m mold ; 
S, solid. 

INTRODUCTION 

HEAT CONDUCTION problems with phase change have 
been studied extensively for over a century. These 
problems are encountered in a wide range of situations 
such as casting of metals and alloys, storage of thermal 
energy, spacecraft thermal protection design, freezing 
and thawing of foodstuffs etc. In modern foundary 
technology, the prediction of the solidification rate and 
the temperature distribution during the solidification 
process is very important in order to control the 
fundamental parameters, such as stripping time for 
static casting, and withdrawal rates for continuous 
casting, etc. 
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have been treated as heat conduction problems. A 

series of analytical solutions have been reported in the 

literature, starting with the well known Stefan’s prob- 
lem. Cole [l] has examined the available literature 
and has given references of various analytical and 
numerical solutions available till 1969. In most of the 
investigations, the major emphasis is given to semi- 
infinite case or one dimensional heat conduction 
problems. The solidification of the melt in multi- 

dimensional enclosures of finite dimensions, for vari- 
ous boundary conditions has been discussed by 
Lazaridis [2] considering pure heat conduction. 

However, the associated convective flow that is 
developed in the melt during solidification, has been 

given little attention so far. The natural convection 
flow developed in the melt due to thermal gradients is 
very important as it can have a large influence on the 

structure of the solid formed, apart from affecting the 
rate of solidification. In fact, the can even affect the 
distribution of the solutes in a multi-component 
system, which is so far believed to occur only by 

diffusion. Experimentally, the predominance of natu- 
ral convection has been shown by Cole and Bolling 
[3]. The first attempt to study the convective flow 

quantitatively has been made by Szekely and Stanek 
[4] in their work on uni-directional solidification 

accompanied by natural convection. Ramachandran 
et al. [S] have solved the solidification problem with 
natural convection in a l-dim. vertical slot for various 

boundary conditions, taking into account the heat 
conducted by the solid and the mold. Sparrow et al. [6] 
have made an elegant analysis of melting of a solid in a 
cylindrical enclosure, with the effect of natural con- 
vection in the melt. Experiments have been performed 
by Sparrow, Ramsey and Kemink [7] for the freezing 
of superheated and saturated melt in a cylindrical 

enclosure. 
The present work was carried out to study solidifi- 

cation in a rectangular enclosure, taking into account 
the heat transfer in the melt, the solid formed and the 
mold containing them. The equations were solved for 
the adiabatic boundary condition at the top and the 
bottom of the enclosure, the mold walls being kept at a 
constant temperature. Velocity distribution, stream- 
lines and isotherm patterns due to combined heat 
conduction and natural convection have also been 
obtained along with the interface movement with time. 

ANALYSIS 

Consider a rectangular enclosure of width 2Y,, 
mold thickness d and height L. The enclosure is 
extended to infinity in the z-direction, as shown in 
Fig. 1. 

Initially, the mold is kept at a temperature T,, which 
is less than the solidification temperature T,,,. At time t 
= 0, the melt at temperature Ti (> T,,,) is poured into 
the enclosure. Immediately, a thin crust of solid is 
formed adjacent to the inner surface of the mold, and 
an inward movement of the solid front starts. Because 

of the thermal gradients set up in the melt, a convection 
current starts in the melt. 

In the analysis, the top and the bottom surfaces of 
the whole enclosure are kept adiabatic, while the outer 
vertical surfaces of the mold are kept at a constant 

temperature. 
The following assumptions are made before writing 

the governing equations: 
(i) The properties such as the density, thermal 

conductivity, specific heat etc. are assumed to be 

independent of temperature for the melt, the solid and 
the mold with the exception of the density of the melt 
which contributes to the buoyancy forces. 

(ii) The fluid flow developed in the melt due to 
thermal gradients is assumed to be laminar. 

(iii) The melt is assumed to be Newtonian. 
(iv) The contact between the solid formed and the 

mold is assumed to be perfect, so that no contact 
resistance is introduced. 

The equations are written for one half of the 
enclosure because of the symmetry at y = 0. We 
require the energy, momentum and continuity equa- 
tions in the melt, and the energy equations in the solid 
and the mold, together with their initial and boun- 
dary conditions. 
Thus, in the melt: 

continuity equation : 

c!+cLo; 
8Y 

momentum equations : 
in the x direction 

au ar+“~+v;=““(T-T,.*) 

and in the y direction 

energy equation : 

aT, a~, a7-, 
at+U~+v~=“l 

Top sur 

FIG. 1. Rectangular enclosure, infinite in z-direction 
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The first term in the RHS of equation (2) is obtained To make the results more general, the following non- 
via Boussinesq approximation [8] in which the density dimensional parameters are defined : 
variation in the melt is considered only in so far as it 
contributes to buoyancy, otherwise it is neglected. 

x* = xfL; y: = y/Y’(t); t* = u,tjD2; 

The problem can be simplified by combining equa- UD2 

tions (lt(3), and writing in terms of vorticity w and 
u* =-. 

%L 
,r - *_$; **Z; 

1 
stream function I++ for ease in numerical computations. 

Thus, the vorticity equation can be stated as w* = wD3/cr,L; T: = (T,-T,)/(T,-T,); (13a) 

aw 
z + uz + ua” = -g/c+ v(V20) T: = (T,- T,)/(T,- T,); y: = 

Y - Y(t) 

3Y aY 
(5) Y,- Y(C) ; 

I 

where 

a* 
u=dy’ 

and v = -2. 
ax 

The energy equation in the solid is 

and in the mold 

a2T, a2T, dT, 

at - um a.9 ( - ~ + ay2 > 

The initial and the boundary conditions are: 

in the melt: 

att=O:T=T,; 

87.1 
at y = 0: - = 0; d”=(). v=o. 

dY ay ’ ’ 

aty=Y’:T=T,,,;u=O; u=O 

and 

atx=Oandx=L: 

dT 
L=O; u=O and v=O; 
dX 

in the solid: 

at Y = Y’: T, = T,,,; 

at y = Y,: T, = T,; 

atx=O andx=L: ?=O; 

in the mold: 

at t = 0; T, = T,; 

aT aT 
at y = Y,: k,- = k,,,?; 

ay ay 

att=O:T,,,=T,; =constant; 

atx=O andx=L:%=O. 

T: = (T,-T,M(T,-T,); ) 

(6) 
Y: = (Y - YoMD - Yd. 

Because of the non-dimensionalization, the original 

(7) 
variables, x, y, t are replaced by x*, y*, t*. Thus, 

(8) 

a El a Y:ayf a 

at - D2 at* Y’ at ay:’ (13b) 

a i a yfay a 

ax L ax* Y’ ax ay:’ 
(13c) 

a i a 
ay- Y’ ay:’ 

(134 

(9) In transforming equations (4)-( 12), to equations 
(14)-(22) below, it has been assumed that the interface 
remains stationary for the period in which heat is 
extracted from it. During this period, the equations 

(lOa) 
describing the fluid flow in the melt and the energy 
equations in the melt, the solid and the mold are solved 

(lob) 
assuming pseudo-steady state as discussed at great 
length by Sparrow et al. [6]. Because of this assump- 

(1Oc) 
tion the term dY’/& appearing in the RHS of 
equation (13b) can be neglected. It has also been 
assumed that the thickness of the melt region Y’ varies 
slowly with x so that the terms involving aY’/ax, 

(1Od) appearing in the RHS of equation (13~) is neglected. 
The inclusion of these terms would add significantly to 
the complexity and execution time of the numerical 
solutions. (Complete transformed equations including 

(lOe) those terms are available in [9].) Sparrow et al. [6] 
have discussed that this assumption is quite valid as a 
first approximation in most cases of the phase change 
problems with natural convection. 

(lla) Thus the transformed dimensionless equations are : 

(lib) aT: 

(llc) &* - 

(12a) 
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D2 

0 

a2w* 

+L I?-- ax*2 + 0 a2W* 4 2Pr- 
Y ayT2 ’ (15) 

o* = -(ET%- (;y$$, (16) 

n*= D y 

0 y’ ay: ’ 
r*=-y 

ax* ’ (17) 

The initial and the boundary conditions become : 

in the melt: 

att*=O: TT=l; (20a) 

aty:=O: 
aTy 
__ = 0; 5 = 0 
ay: 

and u* = 0; (20b) 
1 

1 
aty:=l: T:=----;u 

(4+1) 
*=0 

x [I + (+,‘($)‘]=Sre(~)$; (20d) 

at x* = 0 and x* = 1: 

aTy 
----~0; u*=O andv*=O; 
ax* 

in the solid: 

at y$ = 0: T: = l/(4+1); 

aty$=l: T$=T:; 

atx*=O and 1: g=O; 

in the mold: 

at t* = 0: T* = 0. m 1 

at yz = 0: 
k aT* 2s Y,-Y'aT; =___. 
km ad D-Y, ay;' 

atyz=l: Tz=O; 

aT* 
at x* = 0 and x* = 1: -A = 0. 

aY: 

(2@) 

(224 

Wb) 

WC) 

(224 

SOLUTION METHODOLOGY 

Equations (14)-(22) were solved using finite differ- 
ence technique and 10 x 10 spatial grids were 
established each for the melt, the solid and the mold. 
These grids were fine enough to resolve the steep 
temperature gradients near the interface at early times, 
for Ra < 10’. More grids were provided for higher 
Rayleigh number to accommodate the rapid turning of 
the fluid near the interface. Grids were deployed non- 
uniformly similar to the grid system discussed by 
Spalding [lo] for solving the boundary layer problems. 

The position of the interface was computed at the 
beginning of each time step using Chebyshev approxi- 
mations [ll]. In solving the moving interface equation 
(20d), the temperature gradients at the interface ap- 
pearing in the equation were taken from the known 
values calculated through the previous time step. The 
energy equations for the melt, solid and the mold, and 

the vorticity equation for the melt were written in their 
central difference form and solved using the Alternat- 
ing Direction Implicit (ADI) technique. The elliptic 
stream function equation (16) was solved using the 
Successive Over-Relaxation (SOR) method. The equa- 
tions were solved sequentially. 

At time t* = 0, starting difficulties in the com- 
putation were avoided by assuming a very small 
thickness of the solid, due to chilling, equal to 
0.0001 Y,. It was also assumed that the temperature 
profile in the solid was linear at time t* = 0 [12]. The 
initial thickness of the solid layer, due to chilling, was 
varied to ascertain that it did not influence the 
numerical solution. The tridiagonal matrices formed 

by the temperature and vorticity equations were 
solved using the general Tridiagonal Algorithm de- 
scribed by Roache [ 131. Computations were made on 

a DEC-1090 computer. 

RESULTS AND DISCUSSION 

The temperature profiles in the melt, the solid and 
the mold at various heights, with non-dimensional 
time t* as the parameter, are shown in Fig. 2. As the 
time progresses the temperature decays in the melt. 
The temperature of the melt is found to increase with 
the height, because of the natural convection de- 
veloped in the melt. Initially, the temperature variation 
with the height of the enclosure is very little since 
conduction is dominating. Subsequently, natural con- 
vection currents are developed due to thermal gradi- 
ents, which in turn take the hotter melt to the top of 
the enclosure driving the cooler melt towards the 
bottom. 

The time dependent velocity profiles in the melt are 
shown in Fig. 3. The velocity profiles are symmetric 
about y = 0 and the net upward flow equals the net 
downward flow. With the progress in solidification, the 

vertical velocity of the melt increases, reaches a 
maximum value at some intermediate time and then 
decays. At time t* = 0.03, the convection currents have 
just set in. The velocity near the top (x/L = 0.9) and 
near the bottom (x/L = 0.1) of the enclosure is found 
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Y/Y0 

FIG. 2. Temperature profiles at different x/L. 

to be the same, and the melt-solid interface is almost 
parallel to the wall. As the solidification progresses, the 
slope of the interface changes, and the velocity near the 
top becomes more than that near the bottom surface of 
the enclosure. A comparison of Figs. 2 and 3 at equal 
heights but different times indicates that the thermal 
field and the fluid motion decay almost at equal rates. 
This is true since Pr = 0.98, which suggests that the 
thermal and momentum diffusivities are nearly equal. 

The streamlines and isotherms for the Rayleigh 
number 5 x lo3 and at time t* = 0.27 are shown in 
Figs. 4 and 5. It can be easily observed that the general 
characteristic of the flow pattern is upflow near the 
centre of the enclosure, where the melt is hotter and 
downflow near the melt-solid interface, where the melt 

FIG. 3. Vertical velocity distribution in melt at different x/L. 

191 

FIG. 4. Streamline patterns in melt for Ra = 5 x lo3 and r* 
= 0.27. 

is cooler. Both the streamlines and the isotherms 
indicate that at larger time, the thickness of the melt 
layer is greatest at the top and least at the bottom of the 
enclosure. It is interesting to note that the streamlines 
of higher values are restricted to the top portion of the 
enclosure, where the temperature and hence the flow is 
maximum. At high Rayleigh number (Ra = 5 x 10’) 
secondary cells are observed near the centre of the 
enclosure during the initial period of solidification as 
shown in Fig. 6. 

An examination of Fig. 5 would indicate the pre- 
dominance of the natural convection, where the iso- 
therms are non-linear, contrary to the linear vertical 
isotherms one would expect in the case of pure 
conduction. Isotherms of higher values are concen- 
trated near the centre of the top surface of the 
enclosure where the temperature is maximum. 

The dependence of the interface movement on the 
Rayleigh number is shown in Fig. 7. At low Rayleigh 
number (Ra = 5 x 10’) where the natural convection 
is minimum, the shape of the interface is found to be 

FIG. 5. Isotherm patterns in melt for Ra = 5 x 10’ and t* = 
0.27. 
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FTG. 6. Streamline patterns in melt for Ru = 5 x tab and t* 
= 0.03. 

almost vertical and parallel to the mold. As Ra 
approaches zero, the interface will be exactly vertical 

as conduction is the only mode of heat transfer. As Ra 
increases, heat transfer due to convection increases 

and the slope of the interface changes (Fig. 7). At low 

and moderate Rayleigh numbers the computation is 
carried up to non-dimensional time t* = 0.30, whereas 

for high Rayleigh numbers, the computation is re- 

stricted to a time t* = 0.09, due to enormous 

computation time required in the latter case. 

The movement of the interface with time, for 

different aspect ratios (L/2Y, = 1.1 and 5.5) is shown 
in Fig. 8. At low aspect ratio, where the convection is 

maximum, the slope of the interface is high and it 

1 o,-- 
- Ra 7 5x102 
_-- 5*1C3 

-_.- 5x105 

T 

FIG. 7. Dependence of interface movement upon Rayleigb FIG. 9. Dependence of interface movement upon Prandtl 
number at different times. number at different times. 

FIG. 8. Interface movement at different times for aspect ratios 
of 1.1 and 5.5. 

increases with time. At high aspect ratios, the interface 
is almost verticalexcept near the top and bottom of the 

enclosure, where the boundary effects start influencing 
the shape of the interface. This suggests that one can 

assume the heat transfer to be uni-directional when the 

aspect ratio is very high. 

The infIuence of the Prandtl number (Pr) on the 

interface movement is shown in Fig. 9. As Pr increases 

the interface slope increases up to Pr = 10. Interest- 
ingly Prandtl number greater than 10 does not have 

any influence on the interface movement, and an 

IC 

09 r- __ Pr=Ol 

--__ 10 

0 100 
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1 

0 

FIG. 10. Dependence of interface movement upon Stefan 
number at different times. 

,/ ______------ ok_/--- 
_--- 

0 003 006 DO9 012 015 018 021 0 2‘ 027 030 
1’ 

FIG. 11. Effect of superheat on thickness of the solid formed. 

asymptotic solution is reached. This is evident from 
equation (15) which suggests that the vorticity does 
not change with time at high Prandtl numbers. This 
supports the results discussed by Sparrow et al. [6]. 

The effect of the Stefan number (Ste) on the rate of 
interface movement is shown Fig. 10. The melt-solid 
interface is found to proceed faster when Ste is small, as 
expected. 

The dependence of the solidification rate on the 
superheat (4) can be understood from Fig. 11, where 
the thickness of the solid formed is plotted with time, 
with 4 as the parameter. It can be seen from Fig. 11 
that the rate of movement of solid front decreases 
with increase in 4. This is expected since large 95 
implies higher value of superheat and hence a decrease 
in the solidification rate. 

CONCLUDING REMARKS 

An analysis has been carried out for the solidifi- 

cation in a rectangular enclosure. The equations were 
written for the temperature, vorticity, stream function 
and velocities in the melt. Consideration has also been 
given to the heat conducted through the solid formed 
and the mold. The coupled, non-linear, simultaneous 
equations have been solved using the ADI finite 
difference technique. The thickness of the solid formed 
at every time step has been found by solving the energy 
balance equation at the melt-solid interface. 

The temperature and velocity profiles are plotted at 
various heights in the enclosure. The temperature is 
found to increase with the height. It has also been 
found that the natural convection has significant effect 
on the shape of the interface. The vertical velocity 
component and the temperature decay at almost equal 
rates when the Prandtl number is close to unity. The 
effect of natural convection on solidification is clearly 
shown in the isotherm and streamlines plotted for 
different Rayleigh numbers. Finally, the rate of solidi- 
fication is also studied for various non-dimensional 
parameters such as the Rayleigh number, Prandtl 
number, aspect ratio, Stefan number and the extent of 
superheat. 
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EFFETS THERMIQUES ET DYNAMIQUES PENDANT LA SOLIDIFICATION DUN FLUIDE 
DANS UNE CAVITE RECTANGULAIRE 

R&me-On analyse la solidification dans une cavite rectangulaire dont les surfaces superieure et inferieure 
sont adiabatiques tandis que les &es sont maintenus a temperature constante. On ttudie en detail la 
solidification accompagnee par la convection naturelle. Les equations fondamentales sont &rites pour la 
temperature, la vorticite, la fonction de courant et la vitesse dans le bain avec les equations de la conduction 
thermique dans le solide et le bain. Les equations couplies non-lintaires sont rendues sans dimension et 
rtsolues a l’aide dune methode implicite aux differences finies et avec directions altemtes. Les profils de 
vitesse dans le bain sont donnes ainsi que la distribution de temperature dans le bain et dans le solide. Des 
isothermes et des lignes de courant dans le bain sont tracees pour differents nombres de Rayleigh. On Ctudie 
aussi la dependance du mouvement a l’interface bain-solide vis-a-vis des parametres adimensionnels tels 
que le nombre de Rayleigh (5 x lo’-5 x lOs), le nombre de Prandtl (O,lllOO), le rapport de forme 

(l,l-55). le nombre de Stefan (0.5510) et un parametre indiquant I’effet de surchautIe (0,67-2,331 

THERMISCHE UND STROMUNGSBEDINGTE VORGANGE WAHREND DER ERSTARRUNG 
IN EINEM RECHTECKIGEN GESCHLOSSENEN BEHALTER 

Zusammenfassung-Es wurde eine Untersuchung iiber die Erstarrung in einem rechteckigen geschlossenen 
Raum durchgefilhrt, dessen Ober- und Unterseite adiabat sind und dessen Seiten auf einer konstanten 
Temperatur gehalten werden. Die zeitlichen Vorgange der Erstarrung, die von freier Konvektion begleitet 
sind, wurden detailliert untersucht. Die beschreibenden Gleichungen beriicksichtigen Temperatur, Wirbelig- 
keit, Stromfunktion und Geschwindigkeit in der Schmelze sowie die Warmeleitung in der erstarrten Phase 
und in der Form. Die nichtlinearen gekoppelten Gleichungen wurden dimensionslos gemacht und mit Hilfe 
des impliziten finiten Differenzenverfahrens der alternierenden Richtungen (ADI-Verfahren) gel&t. Es 
werden die Geschwindigkeitsprofile in der Schmelze und die Temperaturverteilung in der Schmelze, der 
festen Phase und in der Form angegeben. Fur verschiedene Rayleigh-Zahlen sind die Isothermen und 
Stromlinien in der Schmelze grafisch dargestellt. Femer wurde die Abhangigkeit der Bewegung der 
Erstarrungsgrenze von verschiedenen dimensionslosen Parametern wie Rayleigh-Zahl (5 lo*-5 . 105), 
Prandtl-Zahl (O,l-lOt), Seitenverhaltnis (l,l-5,S), Stefan-Zahl (0,5-10) und einem Parameter, der den 

EinfluD der Uberhitzung beschreibt (0,67-2,33), untersucht. 

TEllJIOBblE M l-M~PO~MHAMMYECKME 3@@EKTbI HPM 3ATBEPAEBAHMM 
xHAKDCTH B nPmowonbHoGi nonocm 

AmioTaunn - npOBWeH ammi3 npouecca 3aTsepneeanaa B npaMoyronbuoti nonoc~ri, sepxusn li 
HAXWI111 nOBepXHOCTB KOTOpOti RBnIIH)TCII WHa6aTWeCKWMH. a 6OKOBbIe WMeIOT IIOCTORHHyH) TeMne- 

parypy. nOnpO6HO kiccnenyeTcs HeCTaUHOHapHblk npouecc 3aTsepaesarnin, conpoeo~narouuiiica ecTe- 
CTBeHHOti KOHBeKUHefi. &IN OnpeL,eneHH,l TeMnepaTypbI, CTeneHH 3aBHX~HHOCTH. @yHKUHH TOKa II 

CKOpOCTrC XWLIKOCTI1 B paCnnaBe BbIBeLleHbI OCHOBHble ypaBHeHHR HapRL,y C YpaBHeHWRMA nepena',H 

rennarennonpoeonnocrbto ~epe3TeepnoeTeno~n~c~op~y.Hen~HeAHbIeconp~~e~Hb~eypaBHeH~n 

npHBeneHb1 K 6espasMepHoMy B"ny H pe"EHbl HeRBHbIM KOHe.',HO-pa3HOCTHbIM MeTOnOM nepeMeHHbIX 

HanpasneHAB.npencTaBneHbrnpo~KnacKopocTaBpacnnaseBpacnpeneneHHRTeMnepaTyp~ pacnnase. 

TBepnOM rene H npecc@opMe. nOCTpOeHb1 RSOTepMbI H JlFiHHM TOKa B pacnnaee npa pa3ns~HbIx 

3HagewiRx wcna Penen. MccnenosaHa TaKxe 3aBmHMocTb aes~eswn rpaHsub1 pasnena ccpacnnaa- 

Tsepnoe Teno)) OT pa3nwiHbIX 6e3pa3MepHbIX IIapaMeTpOB, TaKWX KaK qricno PeJtea (5. lo*-5’ 105), 
wcno npaHATn5I (O,l-loo), omomenue ~~0p0H (1.1-5.5). 9wcno Crer$ana (0,5-IO) ri napah4eTpa. 

ywrbleammero annanne neperpeea (0,6772,33). 


